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A CLASS OF HYPERSURFACES WITH CONSTANT
PRINCIPAL CURVATURES IN A SPHERE

RYOICHI TAKAGI

Introduction

In a series of papers [1],[2], [3], [4] E. Cartan investigated hypersurfaces
M in a simply connected space form M(c) of constant curvature ¢ such that
all principal curvatures of M are constant. He classified such hypersurfaces
completely for the case ¢ <0, [1], and partially for the case ¢ > 0, [2], [3], [4].
Recently H. F. Miinzner [5] developed Cartan’s theory and proved that to
classify such hypersurfaces in a sphere is equivalent to find all homogeneous
polynomials satisfying certain simultaneous differential equation. The purpose
of this paper is to determine a class of M by giving a partial solution of the
equation.

To state our result we shall describe an example of M in a sphere. For an
integer n > 2 we denote by F, a homogeneous polynomial

o+l 2 n+l 2
(Z:I (xf - x%+n+1)> + 4({; x'ixz‘+-n.+1>

of 2n + 2 variables. Let §*! denote the unit hypersphere in a Euclidean
(2rn + 2)-space R*™*? centered at the origin. For a number ¢ with 0 < ¢ < z/4
we denote by M**(z) a hypersurface in $**** defined by the equation

F,(x) = sin?2t , X = (Xy, - vy Xy, ) € ST

It will be shown that M**(¢} is a connected compact hypersurface in $**** hav-
ing 4 constant principal curvatures with multiplicities 1,1,n — 1 and n — 1,
and admits a transitive group of isometries. Our result can be stated as

Theorem. Let M be a connected complete hypersurface in §**** having 4
constant principal curvatures. If the multiplicity of one of the principal cur-
vatures is equal to 1, then M is congruent to M**(t). In particular, M admits
a transitive group of isometries.

We note that, as mentioned above, E. Cartan classified those hypersurfaces
in a sphere which have at most 3 constant principal curvatures or 4 constant
principal curvatures with the same multiplicity. Thus for the case n = 2 the
above theorem is due to E. Cartan. The polynomial F, was first found by E.
Cartan [3], and F, by K. Nomizu [6].
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1. Differential equation

In the first place we write up all indices and their ranges used in this paper.

In §1, o, =1,---,2n4+2;u=1,---,2n4+ 1;i,j=1,---,2my 4+ my;
S, t=2my+m+1,...,2n+ 1, where my+ m,=n. In §2, u =1,
e 2n4154j=1,--,2n—1;r,5,t=2n2n+1;a,b,c=1,.--,n—1.
Ing§3,u=1,---,2n+1;i,j=1,---,n4+1;r,s5,t=n+2,.--,2n4 1.

Let M be a connected complete hypersurface in $***' having 4 constant
principal curvatures cotd, (a=1, -.-,4) with 0<4, <4,<8, <4, <=z.
Let m, be the multiplicity of cot §,. Then by theorems of H. F. Miinzner [5,
Theorems 1,2 and 3] we know that m, = m, and m;, = m, (so m, + m, =
n > 2), and that there exist a number t with 0 < t < tr and a homogeneous
polynomial F of degree 4 of 2n + 2 variables x,, such that

22 (3
a.2) 22 _sm—2myn 2,
- ox. a

and M = {x = (x,) e S**; F(x) = cos 4t}. Conversely, for every t with 0 <

t < 1r and every homogeneous polynomial F satisfying (1.1) and (1.2), the

set {x e §*"*1; F(x) = cos 4t} is a connected compact hypersurface in S***!

having 4 constant principal curvatures with multiplicites m,, m,, m, and m,.
Put 2F = (3], x2)* — F. Then (1.1) and (1.2) are equivalent to

oF \* _ .
(1.3) ;(axa) =16 T xiF
.4 LSS R
a axa a

Thus in order to prove our theorem it is sufficient to prove that if m, = 1 or
my, = n — 1 then every homogeneous polynomial F satisfying (1.3) and (1.4)
is congruent to F,, i.e., F(x) = F,(¢(x)) for an orthogonal transformation ¢
of R*™*?, In the remainder of this section we shall give the general properties
of F. First fix an arbitrary index «. Without loss of generality we may assume
that F|$*"*! takes its maximum at the point p, = (0, ---,1,-.-,0) (i.e., all
the coordinates x’s are zero except x, = 1). Then we have at p,

oF

~

8x,

(1.5) —cx, =0 for a constant ¢ and each 3 .

Here we put F = a,x% + Lx% + Ax% 4+ Bx, + C, where a,,L,A,B and C
denote homogeneous polynomials of x,, ---, X, 5, X,,1, -+ -, Xon.o Of degree
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0,1,2,3 and 4 respectively. From (1.5) we have 8L/6x; = 0 for § ++ « at p,,
and ¢ = 4a,. From (1.3) and (1.5) it follows that ¢* = 16a,. These imply
that L = 0, and g, = 0 or 4, = 1. Next we shall give the relations which the
polynomials 4, B and C must satisfy under the assumption that a, = 1 for
some index «, say 2r + 2. Thus 4, B and C are polynomials of x,, - - -, X314~
From (1.3) and (1.4) we have respectively

(1.6) 7 a;"j = 8m,— 4,
U xu
B
1.7 —o0,
(1.7 %: oxk,
(1.9) T TC 4+ 24 = 80m + 1) s
% xu u
(1.9) > (_af_)z =16 T x ,
% axu %
(1.10) n 4 B _ 4p,
w 0X, 0X,

(1.11) Z(SB)2+22 04 3C | 44t - 164 T 2 + 16C ,

w % w 6xu axu
(1.12) 5B € Loap=sBY X,
% axu axu u
2 aC \?

(1.13) B+ X = 16C T 2 .

% Xy ”
By a suitable choice of orthogonal transformation on x,, - - -, X,,,, We may set
A= 3,ax,, &> -+ > iy, From (1.6) and (1.9) we have a;f = 4 and
ud, =4m,— 2. Hence af = 2 and a, = —2.

Decompose B into P/ + Q' + R’ + 8/, where P/,Q’,R’ and §’ denote
homogeneous polynomials of x; and x, whose degrees with respect to x; are
equal to 3,2,1 and O respectively. Then taking account of the degree with
respect to x; in (1.10) and using a relation }, x,(3P’/6x,;) = 3P/, etc. we
know P’ = R’ = §’ = 0. In other words, B is of the form 4 }, x,B,, where
B,’s denote homogeneous polynomials of x; of degree 2.

Similarly decompose C into P + Q + R + S + T, where P,Q,R,Sand T
denote homogeneous polynomials of x; and x, whose degree with respect to
x, are equal to 4, 3,2, 1 and O respectively. Then we know from (1.11)
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P=-3B +(zx),

(1.14) R = Z(Z Z;B, xr>2_22i:xgzr:x3,

z 4 X
S=0, T=(2ﬁf.

Hence (1.7), (1.8) and (1.12) are reduced respectively to

(1.15) 5 9Br — 0 foreachr;
T ox:
2
(1.16) > 72 g,
T 0X;
1.17) 5 (z o°B, x,>2 = 8m, 3 X
47 \'r 9x,0x; v
(1.18) 58,92 _o,
T ox,
(1.19) 0B, 0, _o,

nr 0x; 0x;

0B, 6B, ¢o'B
1.20 T X
( ) i,j,TZ,S,t ax.; axj axiaxj

rxsxc—-82x32x§=0-
7 3

From (1.13) we have

1.21) 5 (ip_>2 + ;(ag )2_ 16P T =0,

i\ Ox; ox,

Put B, = 3, ; bj;x,x; and denote by B™ the symmetric matrix (b7,) of de-
gree 2m, + m,. Then (1.15), (1.17) and (1.20) are reduced to

(1.22) traceB" =0 for each r ,

(1.23) trace (B")* = 2m, for each r ,

(1.24) trace B'B* =0 for each distinct », s ,

(1.25) (B")*= B~ for each r ,

(1.26) B*B"B” 4+ B"BSB” + B"B"Bs = B* for each distinct 7, s ,

(1.27) ©B'B°'B' =0 for each mutually distinct r, s, ¢ ,
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where © denotes the cyclic sum with respect to r, s and ¢. (1.27) is significant
only if m, > 2.

Now we assert that in order to solve (1.3) and (1.4) for m, = 1 or m, =
n — 1 it is sufficient to consider the following two cases :

(I) my=n—1 and a,=1 forsome «,

I my=1 and aq,=1 foreacha.

In fact, all the possible cases besides (I) and (II) are (1) m, =»n — 1 and aq,
= 0 for each &, (2) m, = 1 and a, = 0 for each «, and (3) m, = 1 and a,
=1, a, = 0 for some «, 5. In any case we put G = (3, x%)? — F. Then G
satisfies

2 2
z(aG> 16T %G, ¥ aaG — 8 —my + 1) T AL
a X a

= \ 0X, s 2

@

This means that each of the cases (1), (2) and (3) is reduced to (I) or (II).
We shall consider the case (I) (resp. (II)) in § 2 (resp. § 3).

2. The case (I)

We may assume that a,,., = 1. From (1.22), (1.23) and (1.25) it follows
that by a suitable choice of orthogonal transformation on x,, - - -, X;,_, We
may set B,, = Y., x> — >, X%, ,_,, or equivalently

I 0 0
B =10 -—-I 0],
0 O 0

where I denotes the unit matrix of degree » — 1. Denote the transpose of a

matrix J by ¢J, and put
X Y u
BZ‘/z+1 — tY Z v )

. wow

where ¥ = (Y,;) is a matrix of degree » — 1, and u = (»,) and v = (v,)
are column vectors. Then by (1.26) we obtain X = Z = 0, w = 0, and

2.1 _ Y oY pe + 2uuy = 3gp for each a, b ,
(2.2) Sul= v,

Hence from (1.25) it follows that
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(2.3) U, Zc; Yo¥e + u, 2, Yov. =0
[
2.4) Vo 2 Yepthe + vy 2, Yoou, =0 for each a, b .
c 4

Putting a = b in (2.3) we get u, >,.Y,.v. = 0. Then by multiplying (2.3)
by u, and taking the sum over a we have X}, i} >, Y,.v. = O for each b.
Thus we need to divide our discussion into two cases.

(1) The case 3, vl = 0. It follows from (2.1) and (2.2) that v = 0 and
Y is an orthogonal transformation on x,, -« - -, Xyn_,. PUting ¥, = 35 YosXp,no1s
we have By, =2 Yo XoVa, Bun = 2o 2k — %) and 4 =2 3, (2 + y2)
+ x3,_, — X, x%. Since Q is of the form }, Q.x,, where Q,’s denote homo-
geneous polynomials of x; of degree 3, we have, in consequence of (1.18),

0= Z BrQr = % (Xi - y?z)an + 2 a.Z xayaQ2n+1 .

Hence Q,, = B,,.,L and Q,,,, = —B,,L for a linear combination L of x,, y,
and x,,_,. Substituting these in (1.16) we get dL/dx, = 6L/6y, = 0, i.e., L
= kx,,_, for a constant k. Substituting P in (1.14) and the above Q in (1.21)
we find &* = 16. Clearly we may adopt £ = 4. Thus F must be of the form

Moo+ 2(Z 08 49D + doy — 23
+ 4(Z G = % — 2 T oY s
+4Z 8 D - 4(Dx) + 23 6+ D8 + b
+ 42 5 xvetn + T (64— 3kanan ) Kn
+2(Z 4w - ) D+ (Dx)

However, an orthogonal transformation (x,, - -+, Xy, — (X, + + +, Xy s> (on_y
+ xZn)/ﬁ, (Xon-1 — xZn)/‘\/_Z—, (Xom oy + x2n+2)/‘\/_2—9 (Xms1 — xzn+z)/‘\/7) of
R™*t deforms the above polynomial into a polynomial of degree 2 with respect
to each x,. Therefore it should appear in § 3 if it is a solution.

(2) The case 3, u% 5= 0. Since 3. Y,.v, = O for each b, (2.2) and (2.4)
imply 3. Y o, = O for each a. Multiplying (2.1) by u, and taking the sum
over b we get 2u, >, Ui = u, for each a. Hence >, ul = 3, v2 = 1. It is
easily seen that by a suitable choice of orthogonal transformation leaving B,,
invariant we may assume that u,,_, = v,_, = 1/ +/ 2 and all the other u, and

v, vanish. By (2.1), (2.3) and (2.4) we see that Y is of the form [g ’ 8],
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Y’ e O(rn — 2). Hence
n-2
B,, = Z:l G —y) + x5 — ¥,
n-2
By, =2 Z:l Xsys + ﬁ(xn—l + Yo )Xpmo -

As in the case (1), from (1.18) we have Q,, = B,,.,L and Q,,,, = —B,,L
for a linear combination L of x,,y, and x,,_,. Then taking account of the
coefficients of x%, and x,,%,,., in (1.19) we find @ = 0. But substituting the
first equation of (1.14) in (1.21) we can easily see n = 2. In fact, the coeffi-
cient of x,,x,,., does not vanish if n > 2. Since g, = 1 for 1 < a < 6, our
polynomial should appear in § 3 if it is a solution.
3. The case (II)
We put
F =X, + AX}n,s + Bxsnyo + C

where A, B and C denote homogeneous polynomials of x,, - - -, x,,,, of degree
2,3 and 4 respectively. It follows from (1.22), (1.23) and (1.25) that by a
suitable choice of orthogonal transformation on x,, - - -, x,,; We may set

0 0 1
B***=10 0 0O},
1 00

where the central O denotes the zero matrix of degree n — 1. Foreachr >n + 2
we put

where Y7 is a symmetric matrix of degree n — 1. Puttingr = n 4+ 2in (1.26)
and s = n + 2 in (1.26) we get, respectively, x* + z2=0, w* =0, Y* =0
for each s > n + 2, and

(31) (xr)z _|__ iprlz + !q7l2 — 1 R tpr tqr + q7pr — 0
for each r > n + 2. From (1.25) it follows that
(3.2) ()Y + 2P -1 =0, (Y +|pf—Dp =0

foreachr > n + 2. If n > 2weputt =n + 2in (1.27) so that
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(3.3) ‘Pt + 'piq" + qp + g =0,
G4 PP+ +xx=0 for each distinct 7,5 > n + 2 .

Lemma. Foreachr > n + 2, either |[p"|=1, ¢ =0 and x” =0, or
pP=0,lg"| = 1and x = 0.

Proof. It follows from (3.1) and (3.2) that for each r > n + 2, (1) |p7|
=1,9g=0,x=00Q@p=0|¢g7l=1,x=0,003)p =0, g =0,
x" = =+ 1. Suppose that case (3) occurs, or equivalently B" = = (x3 — x2,).
Then such an r is unique by (1.24). Hence the polynomial P (and so also F)
does not involve the term xf. Since this is not the case, by the symmetry of
p” and g” we may assume that p” = O for some r > n + 2. Then from (3.3)
we have g°p” = 0 for each s > n + 2 since ¢" = 0 by (1). Thus ¢* = 0 for
each s. q.e.d.

Owing to this lemma and (3.4) we may set B, = 2x,x,_, for each r. Then,
since 3, (0P/0x,)* = 16 3, x%, we have 3, (@9Q/dx,)* =0 from (1.21).
This implies that O = 0. It is easily seen that the following polynomial which
we just determine satisfies (1.3) and (1.4) for m; = 1:

T+ 2(% + D8 = D + 85 DA
2 2
@z -zn) +4(Zann)
7 T r
This is nothing but F, in the introduction.

4. Homogeneity of M

Let M be a hypersurface in S$?**! satisfying the condition of our theorem.
Then by § 1 there exist a number ¢ with 0 < ¢ < iz and a homogeneous poly-
nomial F satisfying (1.3) and (1.4) such that M = {x e §**!; F(x) = sin’ 2},
and vice versa. In § 2 we prove that every homogeneous polynomial F satis-
fying (1.3) and (1.4) is congruent to F,, i.e., F(x) = F,(ox) for some ¢ € 0(2n
+ 2). On the other hand, it is known [6] that a hypersurface M*"(f) = {x e
S#41y Fo(x) = sin? 2t} in §27*! admits a transitive group G = SO(n) X SO(2)
of isometries, which can be considered as an analytic subgroup of 0(2n + 2).
Thus M admits a transitive group ¢~'Ge of isometries.

Remark. There are more examples of connected compact hypersurfaces
in $***! having 4 constant principal curvatures with multiplicities m,, m,, m,
and m, (m, + m, = n) (cf. [7]). We shall mention only the pairs (m,, m,):
2,2n—1) (n>2), (4,4n — 5) (n> 2), (4,5) and (6,9). Each of these
examples admits a transitive group of isometries.
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